


Ma, Y., Guo, L., Cukic, B. 2006. A statistical framework for the prediction of fault-proneness, advances in machine learning application in software engineering idea group inc.


Shatnawi, R.2012. Improving software fault-prediction for imbalanced data. 2012 international conference on innovations in information technology(IIT),18-20 March 2012,54-

Uchigaki, S., Uchida, S., Toda, K., and Monden, A. 2012. An Ensemble Approach of Simple Regression Models to Cross-Project Fault Prediction. In proceedings of 13th ACIS international conference on software engineering, artificial intelligence, networking and parallel&distributed computing(SNPD12).8-10 August 2012,476-


Zhongbin Sun, Qinbao Song, xiao yan Zhu. Using coding-based ensemble learning to improve software defect prediction. IEEE transactions on systems, man, and cybernetics, part C: applications and reviews, v.42,1,6, pp.1806-1817, doi=10.1109/TSMCC.2012.2226152.


C. Weriss, R. Premraj, T. Zimmermann and A. Zeller, how long will it take to fix this bug? Proceedings of 4th international workshop on mining software repositories (MSR’07), page 1, doi=10.1109/MSR.2007.13.


Marks I, Zou Y, Hassan A E. Studying the fix-time for bugs in large open source projects. In Proc. the 7th International Conference on Predictive Models in Software Engineering, Ban®, Canada, September 2011, Article No.11.


Sharma, M., Bedi, P., Chaturvedi, K.K. and Singh, V.B. predicting the priority of a reported bug using machine learning techniques and cross project validation. Proceedings of 12th international conference on intelligent systems design and application (ISDA’12), pp.539-545, doi=10.1109/ISDA.2012.6416595.